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FLEXURAL PULSE PROPAGATION IN NONUNIFORM
ELASTIC BARS BY GEOMETRIC ACOUSTICS
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Abstract—A direct numerical procedure is developed for analyzing the refraction of a flexural wave which
impinges on a finite region of variable mechanical impedance in an elastic bar. This region is approximated by
a set of uniform impedance elements, regarded as Timnshenko beams, to which the methods of geometric acoustics
are applied. The analysis is performed for an infinite harmonic wave train and is extended to the case of a pulse
by means of numerical Fourier synthesis. Numerical results are obtained for several examples in which experiments
were performed and the calculated pulses are in close agreement with those observed experimentally. It is found
that the contribution of the continuing interaction between propagating and nonpropagating waves accumulates
within a nonuniform region and can significantly affect the net pulses of transmission and reflection.

1. INTRODUCTION

IN A previous paper [1], the authors investigated the reflection and transmission of longi-
tudinal stress pulses which were incident on a finite region of variable mechanical impedance
in a bar. It was found that when such a region is approximated by a set of uniform impedance
steps, the refraction problem could be satisfactorily treated using geometric acoustics, i.e.
the mechanical analogue of geometric optics. In the present work we consider the corre-
sponding problem for flexural pulse propagation using an extension of this technique.

Several authors, e.g. Tyutekin and Shkvarnikov 2, 3] and Pierce [4], have discussed the
use of the WK BJ (after Wentzel, Kramers, Brillouin and Jeffreys) approximation in dealing
with wave propagation and vibration problems in nonuniform, inhomogeneous bars and
plates. The WKBIJ approximation can be used when the coeflicients of the governing
differential equation of motion are slowly varying functions of position. Physically, this
corresponds to slowly varying mechanical and geometric properties in relation to some
typical wavelength. The present approach, however, is not restrictive in this sense. It is
required only that the physical assumptions underlying the governing equation of motion
remain valid.

The analysis in this paper is concerned with the propagation of a flexural pulse along a
circular elastic bar consisting of two uniform and homogeneous end sections connected by a
transition region of variable diameter and mechanical properties. A flexural pulse which
propagates along one of the end sections of such a bar, and impinges on the transition
region, will give rise to refracted pulses of reflection and transmission. In order to calculate
these pulses the transition region is first approximated by a number of uniform and homo-
geneous impedance elements. At the junction between elements there may be a discontinuity
in area and mechanical properties (elastic moduli and density). Refraction coefficients
are deduced for a single discontinuity and are used at each successive one along selected
trajectories through the transition. This is done for each relevant harmonic in the Fourier
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spectrum of the incident pulse and the refracted pulses are calculated by numerical Fouris
synthesis with a digital computer.

The reflection and transmission of a flexural wave at an area jump in a homogencous
clastic bar was investigated by Mugiono [5] and by Ripperger and Abramson (6] within
the framework of Euler-Bernoulli beam theory. The basic analysis in [5. 67 is emploved
this paper except that the bars are treated as Timoshenko beams. The solution t¢ e
refraction problem for a Timoshenko beam ts valid over a wider range of frequencies thun
could be expected from the elementary theory. This extended range of validity 15 cssentiu
in studying the propagation of a pulse for which the Fourier spectrum 1s rich i 1 ‘Jdnuﬁ:;
high frequency components [7]. In the present work 1t is convenient, however. (o umxlu
frequencies no higher than that corresponding to pure thickness-shear vibrations
Timoshenko beam. This restricted frequency range is still well beyond the usefu!l range of
Euler-Bernoulli theory. The highest significant frequencies associated with the experi-
mental pulses were also less than the pure thickness-shear frequency so that experimentand
analysis were compatible.

In the case of non-dispersive longitudinal pulse propagation through a nonuniforu
elastic region [1], the refraction coefficients relating the amplitudes of the incident. reflected
and transmitted pulses at each impedance jump are constants which depend only on ihe
cross sectional areas and material properties of neighboring elements. fa the flexurai
problem, however. the refraction coefficients are also functions of frequency. Morcover, an
incident flexural harmonic wave gives rise to both propagating waves and exponentially
decaying standing or “‘non-propagating” waves at each impedance jump. Similarly.
incident standing wave gives rise to both types of waves. The cumulative mteraction of
harmonic and standing waves is found to contribute significantly to the net refracted
pulses for the transition region as a whole.

Experiments are performed with homogeneous circular aluminum bars having conical
transition regions. Calculated and experimental results for the refracted pulses are found
to be in good agreement.

1

2. ANALYSIS

2.1 Uniform Timoshenko beam
The equation of motion of a Timoshenko beam [8] can be written in the form

4 ~2 ; -
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where x is the coordinate along the beam axis, t is the time, y is the transverse velocity, 7 1
Young’s modulus, y is the shear modulus, « is the radius of gyration of the cross section. ¢;
is the velocity of pure distortional waves in unbounded media, ¢, is the velocity of ex-
tensional waves of long wavelength in a bar [¢; = (i ‘p)t and ¢, = (E/p)*, where p is the
density] and 4 is the ratio of the average shear stress to the maximum shear stress through
the cross section in static bending. In particular, for a circular bar one has 4 = 0-75. The
appropriateness of using the static value of 1 in the dynamic problem is discussed below.
A solution to (1) for a sinusoidal wave of angular frequency w is

y = {A, explir,x)+ A, explir,x)+ A5 explir;x)+ Ay exp(ir,x)} expliowt) {2)
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where 4,, 4,, A5, A, are constants and the wave numbers r,, r,, ry, r4 are the four distinct
roots of the frequency equation

r=*%[b i(bf“bz)ﬂ% (3)
and
*? E w? [KPw?
= TS e e — . 4
by 2c(2,(1+/ly)’ ba c(z,xz( Ac3 1) @)

For isotropic elastic materials, such as the aluminum bars used in the present work, one
always has b?—b, > 0 in (3). Equation (3) is plotted nondimensionally in Fig. 1 for a
circular aluminum bar in the form wa/c, vs. ra and 7a, where r and ¥ are the real and
imaginary parts of the wave number respectively, and a is the radius (x = a/2). For the
aluminum used, Poisson’s ratio is v = 0-34 and one thus has E/u = 2-68. It will be assumed
that the deformation is dominated by bending rather than shear and we therefore restrict
our attention to the lower branch of the dispersion curve of Fig. 1. In so doing we consider

b0y 2/
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EXPERIMENTS
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FiG. 1. Timoshenko dispersion curve for a circular elastic bar with Poisson’s ratio v = 0-34.

frequencies no higher than that corresponding to pure thickness shear motion of the beam.
As shown by Mindlin and Deresiewicz [9] the pure thickness shear frequency for a
Timoshenko beam of radius a is w* = 24%*c,/a. At this frequency b, = 0 (since k = a/2)
and thus for @ > w*, one has b, > 0. The solution to (1) corresponding to the lower
branch of the dispersion curve is thus obtained when @ < w* (b, < 0).
The spatial part of the solution of interest can now be written as

Wx) = A, exp(—irx) + A, explirx)+ A, exp(—Fx)+ A, exp(Fx) (5)
where
+[by + (b1 —by)*1 (62)
by <0)
F=+[—b +(bi-by)1t. (6b)

~
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The first two terms on the right hand side of {5} correspond to harmonic travelling wave
and the last two terms correspond to exponential standing waves. In the sequel we shall
refer to these as H and E waves respectively.

As indicated earlier, the parameter 4 has the value 075 for a circular beam in static
bending. Mindlin and Deresiewicz [9] deduced & dynamic value of 4 by matching «»* in the
exact three dimensional (Pochhammer -Chreet and Timoshenko theories. In the exact
theory «* = 1-841 ¢,/a for a circular bar of radius ¢ and in the Timoshenko theon
* = 2/%,/a. Thus, at the pure thickness-shear frequency one has /4 = 0-847. This proce-
dure is somewhat arbitrary, but does indicate that for «» < w*, 1is only a weak function o!
frequency. Thus, the static value should be an adequate choice over the entire frequency
range of interest and this is verified in Section 3.2.

2.2 Refraction of a flexural wave ar a discontinuity in impedance

In the next section we shall approximate a nonuniform, inhomogeneous region of a bar
by a set of uniform, homogeneous elements. In preparation, we now consider the reflection
and transmission of a flexural wave which s incident on the junction between two such
elements.

Let the wave propagate in the positive x direction and impinge on the junction at x =
as shown in Fig. 2. The properties of the segments on the incidence and transmission side of

incident Wave
]
{; () - () - ‘d—-«. X
1
|

X=0
F16. 2. Flexural wave incident on an impedance junction.

the junction are denoted by the subscripts j and j + | respectively. It may be assumed for the
present that the two segments are semi-infinite in length so that no free end reflections are
superimposed on the refracted waves. If the incident wave is harmonic and of the form
y; = exp i(wt —r x), then from (5) the spatial parts of the solutions for the reflected and
transmitted waves are

y{x) = exp(—ir;x)+ R exp(ir;x)+ R’ exp(F,x) (M
and
Yo%) = Texp(—ir;, (x)+ T exp(—F;, 1x) (8)

respectively.

The first term on the right hand side of (7) represents the incident harmonic wave of unit
amplitude and the second term represents a reflected H (harmonic travelling) wave of
amplitude R propagating in the negative x direction. The last term in (7) represents an E
(exponential standing) wave of peak amplitude R’ which decays with distance in the
negative x direction. An additional E wave term, suggested by the complete solution (5), is
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deleted in (7) by reason of the physical requirement that there not be a continuously
increasing amplitude as the distance from the junction increases.

The first term on the right hand side of (8) represents a transmitted H wave of amplitude
T propagating in the positive x direction. The second term represents an E wave of peak
amplitude T’ which decays with distance in the positive x direction. The extraneous E wave
is deleted as before.

At the junction it is required that the transverse velocity, angular velocity, moment
and shear force be continuous. Thus, at x = 0 one has

y40) = y;+1(0)

y0) = y;+1(0)
J,V,(O) ,+1Ij+ 1)7}’+ 1(0)
JY:;”(O) ;+ o1 j+ 1}7;; 10

where I is the moment of inertia and each prime on y denotes one differentiation with respect
1o x.

Substituting (7) and (8) into (9), and noting that I = na*/4 for a circular bar of radius a,
one obtains the following set of equations for the four coefficients R, R’, Tand T':

R+R-T-T' = -1
lR+k1Rl+lk2T+k3T! = l

(10)
—R+KIR +QkiT— k3T =1
—iR+KkIR —igpk3T+ k3T = —i
where
ky = Fifr ky = rjqfry ks = Fioifr, ¢ = (E;y aty )/Eab. (1)

The solutions for the four coefficients in terms of the parameters k,, k, , k5 and ¢ are easily
obtained but are algebraically complicated. They are given in the Appendix for reference.

It is necessary to convert (7) and (8) into corresponding expressions for the axial surface
strains since the experimental results are obtained with strain gauges. Thus, noting that the
axial surface strain ¢ is related to the transverse velocity y through the equation

f= —2yr (12
one has, for the spatial part of the strain,
a.
g = —i—j)[rf exp(—ir;x)+r; R explir,x) — 72 R’ expl(F )]

(13)

a.:
Ejpq = "';L;Ti[ Fe1Texp(— e 1X) — _)+1T exp(—F;4 1 x)].

If the strain associated with the incident H wave, the reflected H wave, the reﬂected E
wave, the transmitted H wave and the transmitted E wave are denoted by &, ¢/, £, ¢# and
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ef respectively, one has from (7), (8) and (13), at x = 0

H I
&, &y 2
—h; = R 1 = —kIR
& &
u . {14
& a;. & 4
= Jd7ler I N
"H —_ kz], J} T '"'"k}[ .
& a. & a,;

J

In treating the propagation of a pulse through a sequence of impedance elements it is
necessary to evaluate R, R'. T and T" for each relevant harmonic in the Fourier spectrum
of the pulse at each impedance junction. It is thus convenient to introduce subscripts jand #
for the coefficients to designate the junction number and Fourier harmonic respectively
The frequency of the nth harmonic is hw,, where o, is the base frequency of the Fourier
analysis. Since we will be dealing with a sequence of impedance elements it will be con-
venient to adopt the following conventions: (a) elements are numbered in the direction of
propagation of the original incident pulse, (b) each junction is given the same number as the
lower numbered adjacent element. Thus, junction j occurs between elements j and j + 1.

For an H wave of frequency nw, which is incident on junction j, as in Fig. 2, we can
write (14) more compactly as:

H _ nH I E _ E I
& = jn‘L‘i A &, = jni’i
H H H E E H 415
o — ‘ o R 2 1
g = Puel. g = PLe
where
H _ E _ __p2p
n Rjn‘ in klR,fn -
{16j

a,; o

H it 1ly2- £ irbp2o
——k3T,.  Ph = ———k3T,,.

aj a;

As a result of internal reflections, a wave can be incident on either side of a junction. When
incidence occurs in the direction of increasing j, the coefficients are those of (16) and when
incidence occurs in the direction of decreasing j the roles of elements j and j+ [ are inter-
changed and the coefficients are distinguished by the superposed symbol ~. Thus, for
example P = aj/a;, k3T, where ky = rifr;, .

In order to analyze the progress of a flexural wave through a series of impedance
junctions, one must also consider the refraction problem associated with an incident E
wave. The procedure is completely analogous to that for an incident H wave. The algebraic
equations to be solved are identical to those in (10) except for the right hand sides where.
instead of —1,i, 1, —i, one has — 1, k,, — ki, k; respectively. The coefficients R, R, T and
T' in (10) are replaced by R, R', T and T’ respectively. Solutions for these coefficients are
given in the Appendix.

Following the same procedure as before we define four new coefficients

H D E __ __12p’

Gin = Rj", 4in = klen (17
a; — . d; =

ph= YT, g = T,

j j
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which relate the amplitudes of the refracted strain waves to the incident E wave as follows:

H _ H.E E _ E_.E
& “angi’ & '—'angi

(18)

H __ ,H.E E _ LE.E
& —pjngh & _pjngi‘

Asbefore, there are 4 distinct coefficients when incidence occurs in the direction of decreasing
J, ie. @%, P, G5, Pr- One thus has 16 frequency dependent coefficients governing the
refraction problem at each junction.

2.3 Propagation through a continuously variable region

In the illustrative bar specimen of Fig. 3(a), the transition region is divided into three
uniform cylindrical elements of length Ax. It is assumed that the Timoshenko beam
equation (1) is the valid equation of motion in each element.

Consider a harmonic wave which propagates along the small end of the bar and is
incident on the transition. At each junction a portion of the wave will be transmitted and a
portion reflected. This is illustrated in Fig. 3(b) for some typical trajectories through the
transition. It is readily secn that trajectories which include an even number of internal
reflections lead to transmission through the transition and those which include an odd
number of internal reflections lead to reflection from the transition. There is also a single
direct transmission trajectory which includes no internal reflections and this is shown as
trajectory T'1 on the transmission side of the transition. As a consequence of the dispersive
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FIG. 3. (a) Schematic representation of a typical nonuniform bar. (b) Trajectories in the position—time plane.
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character of flexural waves, the trajectory slopes in Fig. 3(b) change from element to element.
For illustration, the slopes shown correspond to the case of a homogeneous transition in
which the radius is monotonically increasing in the direction of propagation of the inciden
pulse.

As an illustration of the computation procedure consider the propagation of a flexural
wave of angular frequency nw, along the direct transmission path 71 through the three-
element transition region of Fig. 3(a). Let the incident harmonic strain wave propagate in
the positive x direction and impinge on the first junction.; = 1, at x = 0. The incident wave
can be represented in the form

e = A, exp i(nwot —r,x) 1%

where A, = a,—ib, is the complex amplitude, and r,, is given by (6a) for the frequency new,
in element | {the uniform segment ahead of the transition). When pulses are considered.
a, and b, will serve as the Fourier coeflicients for the nth harmonic.

In order to arrange the calculations in a suitable form for computer programming, it is
convenient to accumulate the real and imaginary parts of the products of the complex
coefficients separately at each junction. These can then be combined after passage through
the final junction and expressed as an aggregate amplitude factor and phase shift. The
computation scheme for propagation along trajectory T1 of Fig. 3(b) is illustrated in Fig. 4.
The real and imaginary parts of each complex quantity are designated by square and wavy
brackets, i.e. [ } and { !, respectively and the decay factor for E waves in each element is
denoted by y;, = exp(~7;,Ax).

At each junction the accumulated real and imdginary parts of the coefficients are
designated as [H ], {H,,} for H waves and [E ], { E;,} for E waves. Thus, at the first Juncnon
in Fig. 4 there is an incident H wave of amplitude A4, and one has [H,, ] = 1. {H,; = 0.
The coefficients of the refracted H and E waves in element 2 are separated into real and
imaginary parts and the accumulated coefficients for the waves which are incident on the
second junction are designated [H,,], {H,,}. [E,,). {E,,} in the diagram. In the next stage
the complex products are again separated into real and imaginary parts; like waves are then
grouped together and are incident on junction 3. This procedure can be continued indefi-
nitely when there are additional impedance junctions. In general the aggregate coefficients
at each successive junction can be written as

i
H(j+1}n = P,inH]n“l’“p)nb
-« E [
E(j+l}n = (PjnHjn**—pjn jn}?'{jﬁ‘»lm

{20a)

for transmission in the direction of increasing j and
H(i* =P} Hm+p1n
E[*l) (P p]nE )I;n

{20b)
for transmission in the direction of decreasing j as indicated by the superposed ~. The
corresponding expressions for reflection are
H(j*l)n = Qif:HjnM}_Q?ZE‘}n
E(j*l)n = ( H)n+qm )’}"jn

(21a)
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FiG. 4. Computation scheme for a sequence of transmissions.

when incidence occurs in the direction of increasing j and

H(j+1)n Q]nH]n+q E

(21b)

Ejs1yn = @iH jn+ GinEin v+ 1ym
when incidence occurs in the direction of decreasing j. Equations (20a), (20b), (21a) and
(21b) may be used in combination to determine cumulative coefficients along any trajectory.

Since the last step along any trajectory is a transmission through either the first or last
junction, the final value of the aggregate coefficients will be obtained from (20a) or (20b).
However, the exponential decay term for E waves is deleted from the coefficient after the
final junction. This decay is incorporated in the representation of the wave in the uniform
end section.

It is convenient to introduce special notation for the final values of the aggregate co-
efficients. Let these be denoted by aff,, «E, for the transmission trajectories, and B2, BE.
for the reflection trajectories. The superscripts again refer to the corresponding wave types
and the subscripts m and n denote the trajectory number and Fourier harmonic respectively.

Consider now a transition region of length L which begins at x = 0 and terminates in
two uniform, semi-infinite sections. The incidence side of the bar is regarded as the first
impedance element, j = 1, and the transmission side is regarded as the last element denoted
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by j*. The four refracted waves emerging from the transition on trajectory = due to the
incident wave (19) will be

= Jop A, exp i{nwoft =1, —(x — LY/¢ ] + 0,3, (x = L) 22a;
=l A, expl — Fualx — L)] exp i[neg(t — ')+t 1 (x = L {22b)

e = |BiiA, exp ilnwolt — t, + X/c )+ 0,0 (x < 0) 122¢)
el = |BLIA, exp(F,,x) exp ilnwolt — T, )+, ] (x < 0) {2243

where 1;,, and 1}, represent the total travel time in the transition for the mth transmission
and reflection trajectories respectively. These times are given by
L Ax o

or T, "mn = }_ ( . (L3}

‘mn

i in

where the summation is carried out over all the elements traversed along the mth trajectory.
mcluswe of round trips where appropndte and ¢, is the local phase velocity given by

¥ in/Hw, . The phase angles 6, rons s Wi arL the accumulated values along the
mth trajectory and are given by

mn>»

():?UR = drctan{amﬂ fi“fﬂin}‘ W;nn == arctan{aﬁ;ﬂ}/[all;&n (24§

We may now consider the refraction problem associated with an arbitrary flexural pulse
which is incident on a transition region of variable impedance in a bar. Let the pulse propa-
gate along one of the (semi-infinite} uniform end sections and be observed at a distance d,
from the start of the transition [Fig. 3(a)]; the strain pulse can be represented in the form of a
truncated Fourier series

RY
eH—d, .ty = Y (a,cos awyt + b, sin nwyt). (26}

i

n-- 0

The upper limit of summation, N, is chosen large enough 1o obtain the desired accuracy
in representing the pulse. The coefficients a, and b, are determined numerically using the
usual Fourier method and are thus regarded as known.

It is convenient to choose a temporal frame of reference which moves with the front of
the pulse. In so doing, the pulse can be represented in the form (26) at the entrance to the
transition by modifying a, and b,. Thus, making the substitution ¢, = t—d, /v, where v is
the fastest group velocity of any wave packet in the harmonic content of the pulse, the
Fourier representation of the incident pulse at x = 0 is

N

eM0,t) = Y (@, cos nwety + b, sin nwgt;) (27
n=0
where
. 11 . 1
a, = 4, cos nwod, |~ ——1 + b, sin nwed, | ——-—
\ v “in v (“ln

11 . 11
b, cos nwgyd, (;-—{_;) — 4, §in nwgdl(;~?;).

o
i
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Using the real parts of (22a) and (22¢), replacing a, by a, and b, by b,, the refracted
harmonic pulses emerging from the transition are

v o —I) L
Fxt) = Y Y i Re {Anexpi[nwo(tz—r;,,—("c )+;)+9:,.,1}}<sz)

n=0m=1 j*n

(29)

X

N Mr
glot) =2 X |l Re{/_ln eXpi['lwo(tl—ffnn‘l‘ )+0:nn:|}(x <0) (30)

n=0m=1 in

where 4, = a,—ib,, and t, = t; — L/v. The summation limits M’ and M" correspond to the
number of transmission and reflection trajectories respectively which are to be included in
the calculations.

The refracted E waves which emerge from the transition are

ef(x,1,) = i exp[—fj*,,(x—L)]{ A Re( A, exp i[nwo(tz-—rm,,+%) +lﬁ:,,,,})}(x > L)

n=0 m=1
€2y
erlx,ty) = {VZ, CXP(’_'MX){ Z |Brnl Re(A, exp i{na(t —Tfnn)+¢fnn])} (x <0) (32)

At any position on the transmission or reflection side of the transition, the total bending
strain consists of contributions from both E and H type waves. However, the contributions
provided by the E waves decay exponentially with the distance from the transition. As
shown in Fig. 1, the nondimensional imaginary wave number Fa varies between 0-5 and 0-6
over most of the frequency range of interest. Thus, the decay factor in (31) and (32) has a
value of about 0-007 at a distance of 5 diameters from the transition. Since each pair of
amplitude factors o2 |, [o£,| and |BH |, |BE | are of the same order, one can neglect the E wave
contributions beyond a few diameters except for very low frequencies where ra >~ 0 (Fig. 1).

This property of nonpropagating flexural waves is, of course, well known and accounts
for the difficulty in observing them experimentally. However, in the present case, it is possible
to detect the effects of these waves indirectly by using the fact that the local contributions
of the E-H interactions are accumulated in the coefficients for H waves; i.e. off, and p¥ .
The cumulative E-H interaction can be isolated as follows: one chooses a station along
each of the uniform end sections of the bar which is at least 5 diameters from the transition
region so that the presence of actual E waves, given by (31) and (32) can be safely neglected.
The reflected and transmitted pulse shapes are then calculated at these stations with (29) and
(30) using the complete coeflicients. These pulses are compared with those obtained by
similar calculations using incomplete coefficients obtained by suppressing the E-H
interaction. This is done by ignoring the standing wave terms in (13) or by artificially
equating each E coefficient to zero throughout the calculation sequence. The difference
between the results obtained is attributable to the presence of E waves generated at each
impedance jump. (In the physical transition region the process is a continuous one.)
Finally, the calculated pulses, with and without the E-H interaction, are compared with
experiment. This procedure was carried out and is discussed in Section 3.2.



1316 D. Raper and M. Mao

3. RESULTS

3.1 Experimental

Two homogeneous aluminum bars with conical transition regions were used as speci-
mens in the experiments. Complete specimen geometries are described in Table 1 using the
notation of Fig. 3(a). The distance from the impact to the first gauge station. d,, . is the same
on both sides of the transition.

TABLE |. SPECIMEN GEOMETRY : DIMENSION IN INCHES

Bar oy d, L d, D, D,

i 5 15 !
15 8 7 : |

1]
EeN
o
-t

Flexural pulses were produced by the transverse impact of a  in. diameter steel ball
which was suspended by a fine steel wire in the configuration of a pendulum. The impact
speed was carefully controlled and pulses were found to be reproducible in bars of the same
diameter. The contact between ball and specimen completed a circuit for triggering a delay
unit which in turn triggered a dual beam oscilloscope. The triggering delay was set slightly
less than the fastest signal travel time (for flexural waves) between the impact peint and the
first gauge station. This time corresponds to the speed v which is the highest group velocity
of flexural waves propagating in the fundamental mode; approximately equal to the shear
wave speed [7], ¢, = 3100 m/sec in aluminum. Each of the strain gauge pairs [stations 1
and 2 in Fig. 3(a)] were connected to individual bridge circuits arranged for detecting
bending strains and cancelling longitudinal strains. The output of each circuit was dis-
played on one trace of the oscilloscope. The uniform end sections of each bar were made
long enough to preclude interference between the pulses of interest and those reflected
from the free ends of the specimens.

Some typical experimental pulses are shown in Figs. 5(a)«{(d). Results for a specimen
having a transition length L = 0-5in. (bar 1) are shown in Figs. 5(a) and (b} for pulses
incident from the small and large ends respectively. Corresponding results are shown in
Figs. 5(c) and (d) for a specimen of transition length L = 8.01n. (bar 2).

The three pulses on the upper trace in Fig. 5(a) are, reading from left to right, the incident
pulse, the pulse reflected from the transition, and the pulse reflected from the free end. The
main parts of these pulses are well separated but the last two overlap because the reflection
from the transition actually persists indefinitely. The upper trace in Fig. 5(c) shows the
same incident pulse as in Fig. 3(a) but there is no discernible reflection from the transition.
The free end reflection again appears at the right side of the trace.

The upper trace in Fig. 5(b) shows the incident pulse and the reflection from the transi-
tion. There is no free end reflection on this trace since the [ in. diameter end of the bar was
long enough to delay it beyond the time interval of the trace. Similarly, no free end reflection
appears on the upper trace in Fig. 5(d) and, as in Fig. 5(c), there is also no detectable re-
flection from the transition. The lower trace in each of Figs. 5(a)-{d) shows the transmitted
pulse; free end reflections are delayed beyond the trace interval.

3.2 Numerical results
In order to describe the net refracted waves of reflection and transmission, one must in
principle account for the contribution along every trajectory of the infinite set in the
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FiG. 5. Experimental strain pulses. (a) Bar 1, pulse incident from small end. (b) Bar 1,
pulse incident from large end. (c) Bar 2, pulse incident from small end. (d) Bar 2,
pulse incident from large end.
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position—time plane. However, it is often possible to obtain adequate accuracy by considering
only a relatively few significant trajectories. Thus, to illustrate the technique, we consider a
simple example in which only trajectory T1 is used in computing the transmitted wave and
only trajectories which include one internal reflection [such as R1, R2, R3, R4 in Fig. 3(b)]
are used in computing the reflected wave. The number of such reflection trajectories is
evidently equal to the number of impedance junctions. Thus if there are K impedance
junctions in a transition region one has, for the illustrative example, M" = K and M’ = 1
in (29) and (30).

The degree to which such simplifications affect the accuracy of results is discussed in
detail for longitudinal waves in [1], but the essential criteria apply in the present case and
may be summarized as follows: if the variation in impedance along the transition is suffi-
ciently small, and if the conditions |Q§f,| « land |P§f,| ~ 1 obtain at each junction, then the
contributions along trajectories which include the least number of internal reflections are
dominant. (Typical values of these coefficients are given in the Appendix.) For example, the
6 transmission trajectories in Fig. 3(b) which include two internal reflections (shown as
dashed lines T2-T7) furnish a contribution which is less than that along the direct trajectory
T1 by a factor of approximately 6(/Q, )*. For a transition with strong variations in imped-
ance it will generally be necessary to expand the calculations with additional trajectories
(which include more internal reflections) even if the transition is subdivided into a large
number of elements. When the number of calculations required becomes very large, the
utility of the present technique is however seriously compromised and in this sense is most
useful when the change in impedance along the transition is not too great.

In the first stage of the calculations, it is required that the incident pulse be determined
at x = 0 according to (27) and (28). As a check on the accuracy of the calculated input pulse,
an experiment was performed in a 4 in. diameter uniform bar over a measuring distance of
15 in., the value of d, in Fig. 3(a). The pulse was first detected at a distance of 5 in. from the
impact point and was therefore identical to that of Figs. 5(a) and (c). Calculated results,
based on (27) and (28) are compared with experiment in Fig. 6 and are in very good agree-
ment. This also serves as a posteriori evidence that the static value of A may be used in (1).

ok —~— Experimental 5in. From Impact

Experimental 20in. From Impact
o o o Calculated 20in. From Impact
05
/\ 300 00

Time (,u. sec)

(o]

-05F

F1G. 6. Experimental and calculated pulses for propagation along a uniform 1 in. diameter aluminum bar.
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In this and subsequent calculations the fundamental frequency is w, = 4r x 10" rad./sec
and N = 30 Fourier harmonics are used to represent the pulse. The maximum value of the
nondimensional frequency, corresponding to N = 30, is 30wga/c, = 0-773, which 1s con-
siderably less than the critical value w*a/c, = 1-841 where the higher branch of the
Timoshenko dispersion curve begins (Fig. 1). The value chosen for N is, of course. arbitrary
and for sufficiently large N one would have Nw,a/c, > 1-841. However, for smooth pulses.
the Fourier coefficients decrease rapidly in magnitude as N increases. In the present case
one has a,,/a; < 0001 and b;,/b, < 0001 so that the contribution of higher harmonics is
entirely negligible.

Some typical calculated results are given in Figs. 7 and § at the strain gauge positions o}
bar 1. The amplitudes of standing waves, as given by (31) and (32}, were negligible (less than

0.2
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F1G. 7. Experimental and calculated results for a pulse which is incident from the small end mn bar 1.
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F1G. 8. Experimental and calculated results for a pulse which is incident from the large end in bar i.
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1 per cent of the propagating wave amplitudes) at the strain gauge stations and are therefore
not included in the calculated pulses. At positions near the ends of the transition (within one
diameter), however, the standing and propagating wave amplitudes were found to be
comparable, although the latter were always greater.

The transition region of bar 1 was approximated by 16 elements (K = 17 junctions)
and the limits on the trajectory summation in (29) and (30) were M’ = |, M" = K = 17.In
carrying out the computations, one sets x = d, in (29), x = —d, in (30) for Fig. 7, and
x =d, in (29), x = —d, in (30) for Fig. 8. Numerical evaluation of these equations is
expedited by making the substitutions t¥ = t,—d,/v, tf = t, —d,/v and t§ = t,—d,/v,
t¥ = t, — d,/v in the calculations for Figs. 7 and 8 respectively. The time shifts would be
introduced in (31) and (32) if one wishes to calculate the E waves.

In Fig. 7 the amplitudes of the reflected and transmitted pulses are scaled with respect to
the peak amplitude, ,, of the incident pulse which is identical to that shown in Fig. 6. Cal-
culated results for the transmitted pulse [Fig. 7(b)] are in good agreement with experiment
and there is no significant change when the E-H interaction is suppressed. The calculated
results for the reflected pulse [Fig. 7(a)] agree well with experiment, although less well than
for the transmission. In view of the sensitivity of the reflected pulse shape to the transition
geometry (see Fig. 5) it is to be expected that additional reflection trajectories would be
required in the calculations to obtain improved results. It is of considerable interest to note,
however, that the calculated results are substantially less satisfactory when the E-H
interaction is suppressed in the case of the reflected pulse. It is clear that the calculated
results suffer serious errors in both amplitude and phase when the cumulative contributions
of the nonpropagating waves are ignored within the transition region.

Similar results are shown in Fig. 8 for bar 1 when the incident wave propagates in the
opposite direction. The incident pulse shown in Fig. §(b) is similar but not identical to that
of Fig. 7(b) since the bar diameters on the incidence side of the transition are different. In
each case, however, the incident pulse is detected 5 in. from the impact point.

Calculated results are not shown for bar 2, but these too were in substantial agreement
with experiment. Additional experiments were performed with other bar specimens having
transition lengths intermediate between bars 1 and 2. It was found that the reflected pulse
amplitude diminishes rapidly as L increases, with little significant effect on the transmitted
pulse.

4. CONCLUDING REMARKS

The refraction problem for a flexural pulse which is incident on a region of variable
impedance in a bar has been studied by means of geometric acoustics. In the examples
discussed, bending deformation was dominant over shear deformation, i.e. the significant
harmonics in the Fourier spectrum of the pulses were below the frequency of pure thickness-
shear motion.

The analytical procedure allows for variations in cross sectional area and material
properties, but for experimental convenience, the technique has been illustrated for a
homogeneous circular bar in which only the radius varied over a conical transition region.
Typical calculated results were given for one bar in which the radius changed by a factor of
2 (corresponding to a factor of 16 in the moment of inertia) over the length of the transition.
The calculated pulses were in good agreement with experiment even though only the
dominant reflection and transmission trajectories were considered.
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Experimental and calculated results show that the refracted pulse of reflection is
extremely sensitive to the transition length, other factors being constant. The important
parameter here is clearly the ratio A/L, where A is the wavelength measured on the incidence
side of the transition. Since the wave number r is related to A by r = 27/A, one finds from
Fig. I thatn < A/a < 10m, approximately, over the frequency range w, < @ < 30w,. Thus,
for bar 1 = < A/L < 10r and for bar 2, #/16 < A/L < 10n/16, approximately, when the
incident pulse propagates from the small to the large end. In each case, the upper end of the
range is most significant since the low frequency components are dominant in the pulse.
Thus, as an order of magnitude estimate, one has A/L ~ 10in bar | and A/L ~ | in bar 2.
where A can be interpreted as the “effective” wavelength. Evidently, as the transition be-
comes more gradual with respect to the dominant pulse wavelengths, the reflection amplitude
diminishes rapidly.

The amplitude of the transmitted pulse, on the other hand, depends primarily on the
radii (and mechanical properties) of the terminating end sections and is relatively insensitive
to the ratio A/L.

The cumulative effect of nonpropagating flexural waves (E waves), which are generated
at a succession of boundaries, has been observed indirectly. It was found that the cumulative
E-H interaction has a significant influence on the refracted propagating pulse of reflection
but not on the refracted propagating pulse of transmission.

Mathematically, nonpropagating flexural waves occur at an impedance discontinuity
in order to permit the satisfaction of boundary conditions. Such waves are generally difficult
to observe experimentally because they decay rapidly and are invariably superimposed on a
propagating wave of larger amplitude. However the present results suggest a possible means
for the study of such waves. Thus, since a region of continuously variable impedance
appears to accumulate the interactive effects of E and H waves in the coeflicients for the
refracted waves, one can build up the refracted £ wave amplitude to facilitate observation.

Some additional calculations, using (31) and (32), were carried out to investigate this.
It was in fact verified that the amplitudes of refracted nonpropagating waves were com-
parable to those of refracted propagating waves on the reflection side of the transition
within the first diameter. On the transmission side of the transition, the amplitudes of non-
propagating waves were typically 20 per cent of those for propagating waves within the
first diameter.
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APPENDIX
A.1 Reflection and transmission coefficients
R= %{[(k1k3 +k,) (k3 — pk3)(Pk3 — V)] + il pkik,ka(k ks + k3 +k3) — pki(k3 + k, k2 + Kk k2)
+ ko (k3 + ko k3 +k3ky)— @k k3 +k k3 +k3ks) +(2k3Kk3 + k2 (ko ky —k3)]}

R’ = £ {2k, (923K 1]+ 12k (k3 + (kG — 1))
_ %{Zi[kl(l +K2)— k(2 + 1) — bk K2k + ks + )]}
=‘{2k2[¢k (k3 +1)— 1]+ i[2k (1 — pk3)(1 +k2)]}

R = %{21(11(3(18 DK2) (DK +k3) + 2i[pk k3 ky(dks —ky )+ k3ky(dh2 — 1)]}

R = £k +koka) 3 + $2KKE) = sy + k) — ke (3 + )

+il(p%k,k3 + k3 (ks — kiky)+ ¢k%k2k3(k%k3 +k3 —kks)
+ dpkok(k3 + k3 +k,) + ok k3 (k ky — k> —1)— ok K3k} +ky+ 1)1}

=A{2kk kit — pl3) (ke + 1)+ 2K (kF — pk3) (K} + 1))}

_ 1
T = B{i[2k?(1 —k,) (kT + 1) — dk k3(2k3ky + k2 +k,+2)1}
where

D = [(kyks — ko) (9k3 — k) (Ok3 — 1)] — il @kikoka(k ks + K2+ k2) + ¢k3(k3 + k k2 + k, k2)
+ Ok (k3 + ki k3 +k3k3) + ik k3 + ko k2 + k2ky) + (p2k2k2 + k2) (k ko + k)]

and ky, k,, k3, ¢ are given by (11).

A2 Typical numerical values for the complete coefficients in (16) and (17) at an area dis-
continuity in a homogeneous aluminum bar

a; = 05000in., a;,, = 04688 in., E; . ,/E; = 1, w, = 471 x 10° rad/sec.

[ ] = real part, { } = imaginary part.
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AGeTpakT—Onpenensercss HENOCPEACTBEHHbIA UHMCIEHHBI METOI sl aHagu3a OTOOPAXCHUA BOJIHM
wirnba, nagaioweii B KOHeYHOM OBJacTH MEXaHMYECKOTD COMPOTUBIEHHS B YNPYrom CTepkHe. T4
061acTh NPUBIKEHA CHCTEMON 2/1€MEHTOB OAHOMEPHOTO CONPOTHUBJIEHHS, PACCMATPHIAAEMBIX B CMBLNE
Ganku TUMOILEHKH, K XOTOPbIM HPHMERSIOTCE METObl FEOMETPHYECKOH aKYCTHKM, AHAJNH3 NPUBOIAHTCA
ana BecKOHEYHOIo pALA TAPOHHMECKOH BORMBI M NMPHMCHAETCA Aance, A/A CIIYHas HMAYNbLa B CMbIC/E
YUCNHEHHOTO cuuTe3a. Pypve. [1OAYHAIOTCH 4UCTIEHHBIE PE3Y/ABTATHI A8 HEKOTOPHIX NpHMEpOB, ANA
KOTOPBIX IPOH3BEACHB! HKCHEPUMEHTbI.  Onpenenentble UMIYIbChl OKa3BIBAIOTCHA TOUHO COTAACOBANHBIMA
¢ HabnioaeMbiBaeMbl IKCIEPUMEHTANBLHO. OKa3biBAETCR, T0 COAEHCTBUE HENPEPhIBHOCTH B3auMOALH-
CTBUA MEXAY PacHpOCTPAHAOILMMUCS M HEPACHPOCTPAHAIOWIMMUCS BOJIHAMH AKKyMYHPYETCA BHYTPU
HEOHNHOOOJHOM OBNACTH M MOXET 3HAYMTEILHO BIWATE HA CUCTEMY MMNYJILCOB MPOYECCa flepexond H
orobpaxerus.



